Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Vijayakumar N. Sonar,^a M. Venkataraj,^a Sean Parkin^b and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA

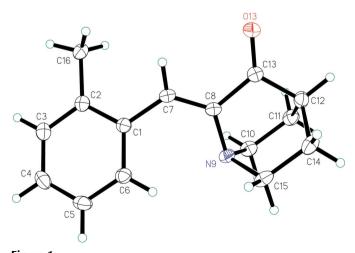
Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study $T=90~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.039 wR factor = 0.107 Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*Z*)-2-(2-Methylbenzylidene)-1-azabicyclo-[2.2.2]octan-3-one


The title compound, $C_{15}H_{17}NO$, has been synthesized by base-catalyzed condensation of 2-methylbenzaldehyde with 1-azabicyclo[2.2.2]octan-3-one and crystallization of the product with ethyl acetate. The geometry around the C = C bond is Z.

Received 6 November 2006 Accepted 16 November 2006

Comment

The title compound, (I), was prepared by base-catalyzed condensation of 2-methylbenzaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one and the product was crystallized from ethyl acetate to afford a single geometrical isomer. The present X-ray crystallographic determination was carried out in order to determine both the geometry and the conformation of the molecule.

Fig. 1 shows a view of (I) and selected geometric parameters are presented in Table 1. The C1–C7 bond is in a *trans* disposition with respect to the C8–C13 bond. Deviations from ideal bond-angle geometry around the Csp^2 atoms of the double bonds are observed. The bond angles N9–C8–C13,

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

© 2006 International Union of Crystallography All rights reserved C7=C8-N9 and C8=C7-C1 (Table 1) are distorted because of the steric hindrance of the double bond linking the 2-methylphenyl ring with the azabicyclic moiety. These deviations significantly contribute to the relief of the intramolecular non-bonded interactions present in this portion of the molecule. The C6-C1-C7=C8 torsion angle indicates the deviation of the double bond from the plane of the benzene ring. However, the C1-C7 bond length suggests conjugation of the C7=C8 bond π electrons with those of the 2-methylphenyl ring (Wilson, 1992).

Experimental

The title compound was prepared according to the previously reported procedure of Sonar et al. (2003). Crystallization from ethyl acetate afforded yellow crystals.

Crystal data

$C_{15}H_{17}NO$	Z = 4
$M_r = 227.30$	$D_x = 1.285 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.6514 (1) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 22.3378 (5) Å	T = 90.0 (2) K
c = 8.0734 (2) Å	Block, yellow
$\beta = 101.6068 (10)^{\circ}$	$0.32 \times 0.28 \times 0.28 \text{ mm}$
$V = 1175.00 (4) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer
ω scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski &
Minor, 1997)
$T_{\text{min}} = 0.975$, $T_{\text{max}} = 0.978$

2688 independent reflections 2099 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.021$ $\theta_{\text{max}} = 27.5^{\circ}$

Refinement

Refinement on F^2	w = 1
$R[F^2 > 2\sigma(F^2)] = 0.039$	+
$wR(F^2) = 0.107$	wh
S = 1.04	$(\Delta/\sigma$
2688 reflections	$\Delta ho_{ m ma}$
155 parameters	$\Delta ho_{ m mi}$
H-atom parameters constrained	

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0533P)^2 \\ &+ 0.2705P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.28 \text{ e Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.20 \text{ e Å}^{-3} \end{split}$$

4984 measured reflections

Table 1 Selected geometric parameters (Å, °).

C1-C7	1.4678 (16)	C8-C13	1.4966 (16)
C2-C16	1.5029 (16)	N9-C10	1.4826 (15)
C7-C8	1.3374 (16)	O13-C13	1.2194 (14)
C8-N9	1.4427 (14)		
C1-C2-C16	121.44 (10)	C8-N9-C10	108.50 (9)
C8-C7-C1	127.53 (11)	O13-C13-C8	124.44 (11)
C7-C8-N9	124.50 (10)	O13-C13-C12	125.28 (11)
C7-C8-C13	121.91 (11)	C8-C13-C12	110.24 (10)
N9-C8-C13	113.53 (10)		. ,
C6-C1-C7-C8	34.30 (18)	C7-C8-C13-O13	-2.39(18)
C1-C7-C8-C13	177.27 (10)		

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C-H distances of 1.00 Å (R_3CH) , 0.99 Å (R_2CH_2) , 0.98 Å (RCH_3) and 0.95 Å (Csp^2) . $U_{\rm iso}({\rm H})$ values were set to either $1.5U_{\rm eq}$ of the attached C atom (CH₃) or $1.2U_{\rm eq}$ for all other H atoms.

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and local procedures.

This investigation was supported by the National Cancer Institute Grant PPG NIH/NCI PO1 CA104457-01 A1.

References

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sonar, V. N., Parkin, S. & Crooks, P. A. (2003). Acta Cryst. E59, o1726-o1728. Wilson, A. J. C. (1992). International Tables for Crystallography, Vol. C, Table 9.5.1.1. Dordrecht/Boston/London: Kluwer Academic Publishers.